5.2. String Functions#

Description

Function

Add leading 0’s to str to full the length

str.zfill(5)

Convert to upper case

str.upper()

Convert to lower case

str.lower()

Check if upper case

str.isupper()

Check if lower case

str.islower()

Check if string is only numbers

str.isdigit()

Check if string is only characters

str.isalpha()

Check if string is chars+numbers

str.isalnum()

Check if string is only spaces and not blank

str.isspace()

Remove white spaces from string

str.strip() (l,r also)

Remove 0’s from left of string

str.lstrip(0)

Remove 0’s from right of string

str.rstrip(0)

Remove 0’s from string

str.strip(0)

Remove anything from string

str.strip(‘abc’)

Replace anything from string

str.replace(‘old’,’new’)

Remove anything from string

str.strip(‘abc’)

Check if string starts with abc

str.startswith(‘abc’)

Check if string ends with abc

str.endswith(‘abc’)

Check if string contains ‘abc’

if ‘abc’ in str

Check if string doesn’t contains ‘abc’

if ‘abc’ not in str

Concatenation or making a string dynamic

‘Hi {name}’.format(name=’Sahil’)

5.2.1. Note :#

- Space is considered as number in python so will be detected in .isnum()
- Nan is float in pandas
- Left,Right and Mid() functions are not available in python but you can use string slicing to get the same results'
- String functions can be chained as well
    - str.replace().replace()

5.2.2. Example of method chaining#

s='ab123abvba'
s.replace('ab','AB').replace('v','V')
'AB123ABVba'

5.2.3. Applying operations on multiple columns#

  • Lets say you want to convert datatype of multiple columns

  • Format to convert datatype of one column

    • df['col'].astype(int)

  • Format to convert datatype of multiple columns

    • Store the list of col names in list

      • list=['A','B','C']

    • Iterate through the list and do the operation on single single element of iterable

      •   df[i].astype(int)```