2.1. Creating a Series#
import pandas as pd
import numpy as np
2.1.1. Empty Series#
a=pd.Series()
print(a)
Series([], dtype: float64)
/var/folders/y0/7jpzlk652q19ghz27zs91vt40000gp/T/ipykernel_29767/374528593.py:1: FutureWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
a=pd.Series()
2.1.2. From List#
list1=['A','B','C']
print(pd.Series(list1))
# or
print(pd.Series(['A','B','C']))
0 A
1 B
2 C
dtype: object
0 A
1 B
2 C
dtype: object
2.1.2.1. Custom indexes#
a=pd.Series(['A','B','C','D'],index=['First','Second','Third','Fourth'])
print(a)
First A
Second B
Third C
Fourth D
dtype: object
2.1.3. From numpy array#
# simple array
data = np.array(['S','A','H','I','L'])
a = pd.Series(data)
print(a)
0 S
1 A
2 H
3 I
4 L
dtype: object
2.1.4. From dictionary#
b=pd.Series({
0:'Sahil',
1:'Sonia',
2:'Sourav'
})
print(b)
0 Sahil
1 Sonia
2 Sourav
dtype: object
2.1.5. Assigning indexes after declaring the series#
new_indexes=['a','b','c']
b.index=new_indexes
print(b)
a Sahil
b Sonia
c Sourav
dtype: object