{ "cells": [ { "cell_type": "markdown", "id": "a60d9738", "metadata": {}, "source": [ "# Seaborn" ] }, { "cell_type": "markdown", "id": "7f012955", "metadata": {}, "source": [ "- Matplotlib but on Steroids\n", "- Python library that quickens the process of visualization\n", " - Built on top on matplot lib\n", "- Old charts like Bar charts, line charts( that too quicker)\n", " + New charts like Box Plots, Violin Charts" ] }, { "cell_type": "markdown", "id": "4be9ce7a", "metadata": {}, "source": [ "# Standardized format to create charts" ] }, { "cell_type": "markdown", "id": "2a21a486", "metadata": {}, "source": [ "- You just need to pass the dataframe as data and specify what are the x and y axis required\n", " - Aggregation will be automatic" ] }, { "cell_type": "code", "execution_count": 11, "id": "000fb582", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkt0lEQVR4nO3dd3hUddrG8e+TRhopEDoJXaQHCEFQQV3bYkGwF6SJDRVkd9199XVX111XXde2dqWJbVV0saGg7IKilCAdKaJ0pCahJJAAv/ePGTDwUgJkcqbcn+vyyswpM08Yc58zv3POc8w5h4iIRI4orwsQEZHKpeAXEYkwCn4RkQij4BcRiTAKfhGRCBPjdQHlkZGR4Ro2bOh1GSIiIWXWrFmbnXM1Dp0eEsHfsGFD8vLyvC5DRCSkmNnKw03XUI+ISIRR8IuIRBgFv4hIhFHwi4hEGAW/iEiEUfCLiEQYBb+ISIQJifP4T9SkxRv4YeMOsjPTaVMvlYS4aK9LEhHxXFgH/3+XbOK1b33XL0RHGafWrkp2Zhrts9LJzkyjcUYSUVHmcZUiIpXLQuFGLDk5Oe5Er9zdsmM3c1YXMGd1AbNXFTB3dQHbd+8BICU+hnaZabQvszFIT4qryNJFRDxjZrOcczn/b3q4B/+h9u1zLN+0g9n+DcGc1QUs+Xkb+/z/DA2rJ5KdmXbgm0GLOinExehQiIiEHgX/UezcvYf5awv93wrymb2qgI3bdwMQFxNF67opZGemk53l+3ZQPz0BMw0RiUhwU/AfB+cc6wt3lRkiymf+2kJ2le4DICM5juzMdNr7NwRtM9NIrhLWh0tEJAQdKfiVVodhZtRNS6BuWgI92tQBoHTvPpb8vN0/RJTPnNUFfPH9Bv/y0KxmMu33fyvISqNZzapE68CxiAQh7fGfhMKiUuasKWDOqgJmr/ZtDAqKSgFIioumTf3UAweN22elUbNqvMcVi0gk0R5/AKQmxtL9lBp0P8V3nwPnHCu2FDFndb5/Y1DAK1N+ZI//yHG9tIQDxwmyM9NoXS+V+FhdWyAilUvBX4HMjEYZSTTKSKJX+/oA7Crdy8J1hQfOIJq9qoBP5q0HICbKaFEnhfZZaQfOJGqUkaQDxyISUBrq8cDG7buYU2ZDMG9NATtL9gKQlhhLu/ppB20M0hJ1bYGIHD+d1RPE9u5z/LBxx4GDxrNXFbB043b2fzSNM5IOHCfIzkzn1DpViY3WtQUicnQK/hCzfVcp89cUMrvMVcebd/iuLagSE0WbeqkHNgTZWWnUTY3XEJGIHETBH+Kcc6wtKC5zrCCfBeu2UbLHd21BzapVDupD1LZ+Kkm6tkAkoumsnhBnZtRPT6R+eiKXtKsLQMmefSz+edtBG4MJi3zXFkQZnFKrqv8iM9+3gqY1ktWUTkS0xx9u8neWMGfNL32I5qzKZ9suX1O6qlViaJuZ6vtm4N8YZCRX8bhiEQkU7fFHiPSkOM5uXpOzm9cEfE3pftqy078h8B08fnHyj+z1X1uQWS3Bd5zAf/C4Vd0UqsTo2gKRcKbgD3NRUUaTGsk0qZHMFR191xYUl+xlwbrCA2cR5a3Yykdz1wEQG220rJvqb1XtO500q1qiDhyLhBEN9QgAG7btYvb+1hOrCpi3ppDiUt+1BdWS4sq0qk6jbf00UhNiPa5YRI5FQz1yVLVS4rmwdW0ubF0bgD1797F0w44DG4I5qwuYtHjjgeWb1Eg6qA9R81pVidG1BSIhIaB7/GY2BBgEGPCKc+4pM8sGXgTigT3A7c65GUd7He3xB4dtu0qZt/qXIaLZqwvYurMEgIRYf1O6MjexqZ2qpnQiXqr0PX4za40v9HOBEuAzM/sEeAx40Dk33sx6+J+fFag6pOKkxMdyRrMMzmiWAfiuLVi9tZjZq/MPnEU0cuoKSvb6ri2onRJ/UOuJNvVTSYzTl0wRrwXyr7AFMM05VwRgZpOBXoADUvzLpALrAliDBJCZkVU9kazqifTMrgfA7j17WbRu24GrjeesLmD8gp8B3w3vm9eqSocGafQ/vRFNaiR7Wb5IxArYUI+ZtQDGAV2AYuBLIA94Hvgc3/BPFNDVObfyMOvfDNwMkJWV1XHlyv+3iISIzTt2M7fMhuC7Vfns2ecYem4zBp3ZWH2HRALEk5YNZjYQGAzsABbh2wBEA5Odc2PN7CrgZufcuUd7HY3xh5eN23fxp3ELGb/gZ1rVTeHRy9vSul6q12WJhB3Pe/WY2cPAGuBvQJpzzpnv5PBC51zK0dZV8Ien8fPXc/+4heQXlXBr98bceU4z3ZhGpAIdKfgD+h3bzGr6f2YBvYG38I3pd/cvcg6wLJA1SPD6dZs6fDGsG73a1+O5/yynxzNfkbdiq9dliYS9QA+ujjWzRcBHwGDnXD6+M33+YWZzgYfxj+NLZEpLjOPxK9vx2oBcdpfu48qXvuWBDxeyc/cer0sTCVu6cleCxs7de/j750sY/e0K6qYm8HDvNgfuZywix8+ToR6R45FUJYYHLm3Fu7d0IT42ir4jZvCbd+ZSUFTidWkiYUXBL0Enp2E1PrnrTO44uyn/nrOWc5+Ywvj5670uSyRsKPglKMXHRvPbC5rz4R2nUyulCre98R23jpnFxm27vC5NJOQp+CWotaqbyrjBp/P7C09l0pKNnPvEZN7NW00oHJsSCVYKfgl6MdFR3HZWE8YPOZNTa6fwu/fmceOIGazeWuR1aSIhScEvIaNJjWTevvk0HurZiu9W5nPBU1MYOfWnA3cTE5HyUfBLSImKMvp0aciEYd3p1LAaD360iKte+pYfNm73ujSRkKHgl5BULy2BUf078cRV7Vi+aQc9nv6aZycto9TfElpEjkzBLyHLzOjdoT4T7+7Oea1q8fiEpVz67FQWrC30ujSRoKbgl5BXo2oVnruuAy/16ciWHbvp+dxUHhm/mF3+ewaLyMEU/BI2LmhVm4nDunNFh/q8OHk5PZ7+ihk/qembyKEU/BJWUhNiefSKtrxxU2dK9+3jqpe+5f5/L2D7rlKvSxMJGgp+CUunN83g86HdGHB6I16fvpILnpzCf5Zs9LoskaCg4JewlRgXwx8vacnY27qSVCWG/iNnMuxfc8jfqaZvEtkU/BL2OmSl8/FdZ3DXOU35cO46zn1iMh/PW6e2DxKxFPwSEarERDPs/OZ8dOcZ1EtP4I43Z3PLmFlsUNM3iUAKfokoLeqk8P5tXbm3x6lMXrqJc5+YzL9mrtLev0QUBb9EnJjoKG7u1oTPh3ajZZ0Ufj92Pte/Op1VW9T0TSKDgl8iVsOMJN4adBp/7dWaeWsKueCpKQz/Wk3fJPwp+CWiRUUZ13duwMRh3ejSpDoPfbyIy1/4hqUb1PRNwpeCXwSok5rA8L45PH1NNiu37OSiZ77imS+XUbJHTd8k/Cj4RfzMjJ7Z9fhiWHd+3boOT0xcyqXPfs3c1QVelyZSoRT8IoeonlyFZ65tz6s35lBQVEqv56fy8KffU1yipm8SHhT8IkdwbstaTBjWjas7ZfHylB/59dNT+Hb5Fq/LEjlpCn6Ro0iJj+Vvvdvw5qDOOODaV6Zx7wfz2aambxLCFPwi5dC1SQafDenGoDMb8faMVZz/xBQmLd7gdVkiJ0TBL1JOCXHR3HdRS96//XRSE2IZMCqPIW/PZsuO3V6XJnJcFPwixyk7M42P7jyDoec249P56znvySmMm7NWbR8kZCj4RU5AXEwUQ889hY/vPJPMaokMeXsON43OY31hsdeliRyTgl/kJDSvXZX3b+vK/17UgqnLN3P+E1N4c/oq9qntgwQxBb/ISYqOMm46szGfD+1G63qp3PvBfK57dRorNu/0ujSRw1Lwi1SQBtWTeHNQZx7p3YaFa7dx4dNTeGXKj2r6JkFHwS9SgcyMa3KzmDisO2c0zeCvn35P7+ensuRnNX2T4KHgFwmA2qnxvHJjDv+8tj1r8ou5+J9f8eTEpezeo7YP4j0Fv0iAmBmXtKvLxGHdubhtXZ7+chmX/PNrZq/K97o0iXABDX4zG2JmC8xsoZkNLTP9TjNb4p/+WCBrEPFataQ4nrw6mxH9cti+aw+9X/iGhz5eRFHJHq9LkwgVE6gXNrPWwCAgFygBPjOzT4D6QE+grXNut5nVDFQNIsHknFNrMeHuajz62WKGf/0TExdt4JHebejaNMPr0iTCBHKPvwUwzTlX5JzbA0wGegG3AY8453YDOOc2BrAGkaBSNT6Wv1zWhrdvPo0og+tenc4fxs6jsFhN36TyBDL4FwDdzKy6mSUCPYBM4BTgTDObbmaTzazT4VY2s5vNLM/M8jZt2hTAMkUq32mNq/PZ0G7c0r0x7+St5vwnJzNxkZq+SeWwQPYXMbOBwGBgB7AIKAbOAyYBQ4BOwL+Axu4oheTk5Li8vLyA1SnipXlrCrjnvXks/nk7F7etwwOXtiIjuYrXZUkYMLNZzrmcQ6cH9OCuc264c66Dc64bsBVYBqwB3nc+M4B9gAY5JWK1re9r+vab805hwsINnPvEZD6YvUZN3yRgAn1WT03/zyygN/AW8G/gHP/0U4A4YHMg6xAJdrHRUdz5q2Z8ctcZNMpI4u5/zWXAqJmsK1DTN6l4gT6Pf6yZLQI+AgY75/KBEUBjM1sAvA30Pdowj0gkaVarKu/d2pU/XtySaT9u5fwnpzBm2ko1fZMKFdAx/oqiMX6JRKu3FvE/78/n6x82k9uoGo9e3pZGGUlelyUhxJMxfhE5cZnVEhkzMJfHrmjL4vXbuPCpKbw4eTl79u7zujQJcQp+kSBmZlyVk8kXw7pzVvMaPDJ+Mb2e/4ZF67Z5XZqEMAW/SAiomRLPizd05PnrO7C+sJhLn/2af0xYoqZvckIU/CIhwszo0aYOE+/uzqXZdfnnpB+46JmvmbVSTd/k+Cj4RUJMelIcT1yVzaj+nSgu2csVL37Dgx8tZOduNX2T8lHwi4Sos5rX5PO7u9HntAaMnLqCC56awlfL1N5Ejk3BLxLCkqvE8OeerXnnli7ERUfRZ/gM7nlvLoVFavomR6bgFwkDuY2q8emQM7n9rCaM/W4t5z45mc8W/Ox1WRKkFPwiYSI+Npp7LjyVcYNPp0ZyFW59fRa3vzGLjdt3eV2aBBkFv0iYaV0vlXF3nM7vLmjOF99v5LwnpjB2lpq+yS8U/CJhKDY6isFnN+XTu86kac1kfvPuXPqOnMma/CKvS5MgoOAXCWNNaybz7i1dePDSVuSt2MoFT07htW9XqOlbhFPwi4S5qCijb9eGTLi7Gx0bVuOP4xZy9cvfsnzTDq9LE48o+EUiRP30REb378TjV7Zj6YYd/Prpr3j+vz9QqqZvEUfBLxJBzIwrOtZn4rBunNuiJo99toTLnpvKgrWFXpcmlUjBLxKBalaN5/nrO/LiDR3YsG03PZ+byrOTlunMnwgRc7wrmFkUkOycU19YkRB3Yes6dGmcwf3jFvD4hKVERRm3n9XU67IkwMq1x29mb5pZipklAYuAJWb2u8CWJiKVITUxlqeuzqZndl0e+2wJb05f5XVJEmDlHepp6d/Dvwz4FMgC+gSqKBGpXFFRxuNXtuOs5jW479/z+XT+eq9LkgAqb/DHmlksvuAf55wrBTQYKBJGYqOjeOH6jnTMSmfI27PV6TOMlTf4XwJWAEnAFDNrAGiMXyTMJMRFM7xfJ5rUSOaWMbOYvUo3eQlH5Qp+59wzzrl6zrkezmclcHaAaxMRD6QmxPLagFwykqvQf9RMlm7Y7nVJUsHKe3C3lpkNN7Px/uctgb4BrUxEPFMzJZ7XB3YmNjqKPsOns3qrevyEk/IO9YwCPgfq+p8vBYYGoB4RCRJZ1RMZMzCX4pK93DhiBpu27/a6JKkg5Q3+DOfcO8A+AOfcHmBvwKoSkaBwau0URvbvxPrCYvqNnMG2XbqzVzgob/DvNLPq+M/kMbPTAF3jLRIBOjaoxos3dGTJz9u5aXQeu0q1zxfqyhv8w4APgSZmNhV4DbgzYFWJSFA5q3lN/nFVO2au2Modb37HHjV2C2nlatngnPvOzLoDzQEDlvjP5ReRCNEzux7biku5f9xC7hk7j8evaEdUlHldlpyAowa/mfU+wqxTzAzn3PsBqElEglSfLg3JLyrliYlLSUuI4/6LW2Cm8A81x9rjv+Qo8xyg4BeJMHee05StO0sYMfUnqiXFcsc5zbwuSY7TUYPfOde/sgoRkdBgZvzx4pYUFpfy+ISlpCXGccNpDbwuS45Dudsym9lFQCsgfv8059yfA1GUiAS3qCjjsSva+sf8F5CaEMsl7eoee0UJCuW9cvdF4Gp8Z/IYcCWgTbxIBIuNjuK56zvQqUE1hr0zh8lL1dQtVJT3dM6uzrkbgXzn3INAFyAzcGWJSCiIj43mlb45NK1ZlVvHzGLWSjV1CwXlDf5i/88iM6sL7AEaBaYkEQkl+5u61UqpwoBRM1nys5q6BbvyBv/HZpYGPAbMAn4C3j7WSmY2xMwWmNlCMxt6yLzfmpkzs4zjrFlEgkyNqlUYM7Az8bFq6hYKjhr8ZtbJzGo75x5yzhUAycB84F3gyWOs2xoYBOQC7YCLzayZf14mcB6ge7yJhInMaom8NqAzu/fs44bh09XULYgda4//JaAEwMy6AY/4pxUCLx9j3RbANOdckb+p22Sgl3/ek8A96C5eImGlee2qjOjXiY3bdnPjiBkUFusC/2B0rOCPds5t9T++GnjZOTfWOXc/0PQY6y4AuplZdTNLBHoAmWZ2KbDWOTf3aCub2c1mlmdmeZs26WwBkVDRsUE6L/bpyA8bt3PT6JkUl6ipW7A5ZvCb2f5z/X8FTCoz71gXf30PPApMBD4D5uI7KHwf8MdjFeace9k5l+Ocy6lRo8axFheRINL9lBo8cVU2eSvzGfzmd5SqqVtQOVbwvwVMNrNx+M7s+QrAzJpSjrbMzrnhzrkOzrluwFZ89+1tBMw1sxVAfeA7M6t9wr+BiASlS9rV5aGerZm0eCP3vDePffs0shssjrXX/lcz+xKoA0xwzu3/5KIoR1tmM6vpnNtoZllAb6CLc+7pMvNXADnOuc0n+guISPC64bQGFBSV8PiEpaQmxPKnS1qqqVsQOGbLBufctMNMW1rO1x/rv4FLKTDYOaerO0QizOCzm5JfVMrwr3+iWlIcd/1KTd28Vu5ePSfCOXfmMeY3DOT7i4j3zIz7erSgwN/OOT0xlj5dGnpdVkQLaPCLiICvqdujl7ehsLiUP364kJSEWHpm1/O6rIhV3it3RUROSkx0FM9e155ODavxm3fm8p8lG70uKWIp+EWk0sTHRvNq3xya167Kba/PYtbKrcdeSSqcgl9EKlVKfCyjB+RSJzWB/iNn8v36bV6XFHEU/CJS6TKSqzBmYC6JcTHcOGIGq7aoqVtlUvCLiCfqpycyZmAupXt9Td02btvldUkRQ8EvIp5pVqsqI/t1YvMOf1O3IjV1qwwKfhHxVPusdF7q05Hlm3YwUE3dKoWCX0Q8d2azGjx9TXtmrcrntjdmqalbgCn4RSQo9GhTh4d7teG/Szbx23fnqqlbAOnKXREJGtfmZpFfVMJjny0hLSGWBy5tpaZuAaDgF5Ggclv3JuTvLOGVr34iLTGOu887xeuSwo6CX0SCiplxr7+p29NfLiM9MZZ+pzfyuqywouAXkaBjZvytt6+p2wMfLSItMY7L2qupW0XRwV0RCUox0VE8c217Tmtcjd++O5dJizd4XVLYUPCLSNCKj43mlRtzaFEnhdte/46ZK9TUrSIo+EUkqFWNj2VU/07US0tgwKiZLFqnpm4nS8EvIkGvenIVxtzUmeQqvqZuKzbv9LqkkKbgF5GQUC8tgTEDc9m7z9fUbYOaup0wBb+IhIymNasyqn8u+TtLuHH4DAqKSrwuKSQp+EUkpLTLTOPlG3P4afNOBoyaSVHJHq9LCjkKfhEJOac3zeCZa7OZs7qAW1//jpI9aup2PBT8IhKSLmxdh7/1bsOUpZsY9s4c9qqpW7npyl0RCVlXd8oiv6iUR8YvJi0xlod6tlZTt3JQ8ItISLu1exPyi0p4afKPVEuMY9j5zb0uKegp+EUk5P3hwlMp2FnKM5N+IC0xjgFnqKnb0Sj4RSTkmRl/7dWawuJS/vzxItISY+ndob7XZQUtHdwVkbAQEx3FU9dk07VJdX733jy+WKSmbkei4BeRsBEfG83LN+bQqm4Kg9/8juk/bvG6pKCk4BeRsJJcJYZR/XOpn57ATaPzWLC20OuSgo6CX0TCTrWkOMYM7EzV+Bj6jZzBT2rqdhAFv4iEpbppCYy5qTP7HNzw6nR+LlRTt/0U/CIStprUSGZ0/1wKikroM3y6mrr5KfhFJKy1qZ/KK31zWLm1iH4jZ7Jzt5q6KfhFJOx1bZLBP69tz7w1Bdz6+ix279nrdUmeCmjwm9kQM1tgZgvNbKh/2t/NbLGZzTOzD8wsLZA1iIgAXNCqNo9c3pavlm1m2L/mRnRTt4AFv5m1BgYBuUA74GIzawZMBFo759oCS4H/CVQNIiJlXZWTyX09WvDJ/PXcP24BzkVm+AeyZUMLYJpzrgjAzCYDvZxzj5VZZhpwRQBrEBE5yKBujdlaVMIL/11OemIsv7vgVK9LqnSBHOpZAHQzs+pmlgj0ADIPWWYAMP5wK5vZzWaWZ2Z5mzZtCmCZIhJp7rmgOdfmZvLcf5bz6lc/el1OpQvYHr9z7nszexTf0M4OYC5w4HC6md3nf/7GEdZ/GXgZICcnJzK/j4lIQJgZf7msDYXFpfzlk+9JS4zjio6R09QtoAd3nXPDnXMdnHPdgK3AMgAz6wtcDFzvInWQTUQ8FR1lPHl1Nmc0zeD3Y+cxYeHPXpdUaQJ9Vk9N/88soDfwlpldCPweuHT/+L+IiBeqxETzUp+OtK6Xyh1vzebb5ZHR1C3Q5/GPNbNFwEfAYOdcPvAsUBWYaGZzzOzFANcgInJESVViGNWvE1nVEhn0WmQ0dbNQGGnJyclxeXl5XpchImFsfWExV7zwLbtK9/LurV1oXCPZ65JOmpnNcs7lHDpdV+6KiAB1UhMYMzAXgD7DZ7C+sNjjigJHwS8i4te4RjKjB+RSWFxKn+Ez2LozPJu6KfhFRMpoXS+VV/vmsGprEf1HzmBHGDZ1U/CLiBzitMbVee66DixYt41bxuSFXVM3Bb+IyGGc17IWj13elqk/bGHo23PCqqmbgl9E5Agu71if/72oBeMX/Mx9H8wPm6ZugWzSJiIS8m46szEFRaU8+58fSE+K4/cXhn5TNwW/iMgx/Ob8Uw7q6HlztyZel3RSFPwiIsdgZjzUszWFxaU8/Oli0hLiuKrToc2GQ4eCX0SkHKKjjCevymZbcSl/eH8eKQmxXNi6ttdlnRAd3BURKae4mChe6tORdplp3PXWbL5Zvtnrkk6Igl9E5DgkxsUwsl8nGmYkMmh0HvPWFHhd0nFT8IuIHKe0xDheG9CZ9KQ4+o2cyQ8bd3hd0nFR8IuInIDaqfGMGdiZKIMbh09nbUHoNHVT8IuInKBGGUmMHpDL9l176DN8Olt27Pa6pHJR8IuInIRWdVMZ3q8Ta/OL6T9qZkg0dVPwi4icpNxG1Xj++g4sXLeNm1/LY1dpcDd1U/CLiFSAX7WoxeNXtuWb5VsY8vZs9uzd53VJR6TgFxGpIL3a1+dPl7Tk84UbuDeIm7rpyl0RkQrU//RG5O8s4ZlJP5CeGMf/9GjhdUn/j4JfRKSC3X3eKeQXlfLSlB9JT4rj1u7B1dRNwS8iUsHMjAcvbUVBcSmPjF9MWkIs1+RmeV3WAQp+EZEAiIoy/nFlO7YVl3LvB/NJTYjl123qeF0WoIO7IiIBExcTxQs3dKB9VjpD3p7D18uCo6mbgl9EJIAS42IY0bcTjTKSuHlMHnNWF3hdkoJfRCTQUhNjGTMwl+rJcfQfOYMfNm73tB4Fv4hIJaiZEs/rAzsTHRXFDa/OYE1+kWe1KPhFRCpJg+pJjBmYy86SPdw4fAabPWrqpuAXEalELeqkMKJfJ9YVFtNv5Ay27yqt9BoU/CIilaxTw2q8cH1HFq/fziAPmrop+EVEPHD2qTX5x1XtmPbjVu58q3Kbuin4RUQ80jO7Hg9e2oqJizbwh/fns29f5TR105W7IiIe6tu1IflFJTz1xTLSEmK576IWmFlA31PBLyLisSG/akb+zhJe/fon0pPiGHx204C+n4JfRMRjZsafLvE1dfv750tIT4zjus6Ba+oW0DF+MxtiZgvMbKGZDfVPq2ZmE81smf9neiBrEBEJBVFRxuNXtuPs5jW479/z+WTe+sC9V6Be2MxaA4OAXKAdcLGZNQP+AHzpnGsGfOl/LiIS8WKjo3j++o50zEpn6L9m89WyTQF5n0Du8bcApjnnipxze4DJQC+gJzDav8xo4LIA1iAiElIS4qIZ3q8TTWokc8uYWcxelV/h7xHI4F8AdDOz6maWCPQAMoFazrn1AP6fNQ+3spndbGZ5Zpa3aVNgtnoiIsEoNSGW1wbm0rFBOtWS4ir89S2QNwM2s4HAYGAHsAgoBvo759LKLJPvnDvqOH9OTo7Ly8sLWJ0iIuHIzGY553IOnR7Qg7vOueHOuQ7OuW7AVmAZsMHM6viLqgNsDGQNIiJysECf1VPT/zML6A28BXwI9PUv0hcYF8gaRETkYIE+j3+smVUHSoHBzrl8M3sEeMc/DLQKuDLANYiISBkBDX7n3JmHmbYF+FUg31dERI5MTdpERCKMgl9EJMIo+EVEIoyCX0QkwgT0Aq6KYmabgJUnuHoGsLkCy5GKoc8l+OgzCU4n87k0cM7VOHRiSAT/yTCzvMNduSbe0ucSfPSZBKdAfC4a6hERiTAKfhGRCBMJwf+y1wXIYelzCT76TIJThX8uYT/GLyIiB4uEPX4RESlDwS8iEmHCJvjNbIfXNcgvzGyvmc0p81/Doyz7XzPTaYQVxMycmY0p8zzGzDaZ2ccV9Pr6W6sAZtbL/1mdegLrvmpmLf2PV5hZxvGsH+i2zBK5ip1z2V4XEaF2Aq3NLME5VwycB6w9nhcwsxj/vbIlcK4FvgauAR4o70pmFu2cu+lk3jhs9vgBzCzZzL40s+/MbL6Z9fRPb2hm35vZK2a20MwmmFmC1/VGGjPraGaTzWyWmX2+/05sfjeY2TdmtsDMcj0rMnyMBy7yP74W302QADCzXP+/9Wz/z+b+6f3M7F0z+wiY4P97Gun/W5pnZpeXeY2/mtlcM5tmZrUq8xcLB2aWDJwODMQX/JjZWWY2xcw+MLNFZvaimUX55+0wsz+b2XSgy8l+Sw6r4Ad2Ab2ccx2As4F/mJn55zUDnnPOtQIKgMsP/xJSQRLKDPN8YGaxwD+BK5xzHYERwF/LLJ/knOsK3O6fJyfnbeAaM4sH2gLTy8xbDHRzzrUH/gg8XGZeF6Cvc+4c4H6g0DnXxjnXFpjkXyYJmOacawdMAQYF9lcJS5cBnznnlgJbzayDf3ou8BugDdAE350LwfdvvsA519k59/XJvnm4DfUY8LCZdQP2AfWA/XsjPznn5vgfzwIaVnp1keWgoR4zaw20Bib6t8XRwPoyy78F4JybYmYpZpbmnCuovHLDi3Nunv+4yrXAp4fMTgVGm1kzwAGxZeZNdM5t9T8+F//eqP818/0PS4D9xwtm4RtKkuNzLfCU//Hb/uefADOccz8CmNlbwBnAe8BeYGxFvXm4Bf/1QA2go3Ou1MxWAPH+ebvLLLcX0FBP5TJgoXOuyxHmH3pBiS4wOXkfAo8DZwHVy0x/CPiPc66Xf+Pw3zLzdpZ5bBz+cyh1v1wAtJfwy5GA8t+O9hx8x2Ecvp0gh28DfaS/g13Oub0VVUO4DfWkAhv9oX820MDrguSAJUANM+sCYGaxZtaqzPyr/dPPwDe8UOhBjeFmBPBn59z8Q6an8svB3n5HWX8CcMf+J2aWXqHVRa4rgNeccw2ccw2dc5nAT/j27nPNrJF/bP9qfAd/K1xYBL+ZxeDbo38DyDGzPHx7/4s9LUwOcM6V4Psf/lEzmwvMAbqWWSTfzL4BXsR3wEtOknNujXPu6cPMegz4m5lNxbe3eSR/AdL9B9zn4jtuJifvWuCDQ6aNBa4DvgUeARbg2xgculyFCIuWDWbWDnjFOaezQUQkJJnZWcBvnXMXB/q9Qn6P38xuxXdg8H+9rkVEJBSExR6/iIiUX8jv8YuIyPFR8IuIRBgFv4hIhFHwi1DxHS3NLM3Mbi/z/KyK6o4pcrIU/CI+Bzpa+p8fd0fLQ6Th6zskEnQU/CK/OFpHy2pm9m9/l8ppZtbWP/0BMxvh75b4o5nd5V/lEaCJv0nd3/3Tks3sPTNbbGZvlGkgKFKpFPwivzhaR8sHgdn+LpX3Aq+VmXcqcAG+zop/8nci/QOw3DmX7Zz7nX+59sBQoCXQGF9bXpFKp+AX8XPOzcPXtfVwHS3PAMb4l5sEVDezVP+8T5xzu51zm4GN/NIR9lAz/G0U9uFrWdGwQn8BkXJSVz2Rgx2po+XhhmX2X/14aOfXI/1dlXc5kYDSHr/IwY7U0XIKvsZ/+3uqbHbObTvK62wHqgaiQJGTpT0OkTKcc2uAw3W0fAAYaWbzgCKg7zFeZ4uZTTWzBfgOGn9S0bWKnCj16hERiTAa6hERiTAKfhGRCKPgFxGJMAp+EZEIo+AXEYkwCn4RkQij4BcRiTD/BwUrQsMsk4JOAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "import pandas as pd\n", "data = {'Month':['Jan','Feb','March','April'],\n", " 'Sales': [99, 98, 95, 90],\n", " 'Profit': [10,20,30,40]\n", " }\n", "\n", "# df=pd.DataFrame(data,columns=['Sales','Profit'],index=data['Month'])\n", "# See above dataframe was for matplotlib, and it required customizations\n", "# like you have to specify x axis in index\n", "# you have to have only one categorical column in dataframe and much more\n", "df=pd.DataFrame(data)\n", "\n", "# No such things in Seaborn\n", "# No Dataprep needed in Seaborn\n", "sns.lineplot(\n", "x='Month',\n", "y='Sales',\n", "data=df,\n", "estimator=sum, # optional : aggregation can be changed as well\n", ");\n", "\n", "# See we didn't even passed labels still they appread automatically" ] }, { "cell_type": "code", "execution_count": null, "id": "bfc58e66", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }