{ "cells": [ { "cell_type": "markdown", "id": "e1b04b1d", "metadata": {}, "source": [ "# Heatmap" ] }, { "cell_type": "markdown", "id": "81e93249", "metadata": {}, "source": [ "- See the most common value\n", " - Only be used with Numerical Values\n", " - Nulls are plotted as black cells" ] }, { "cell_type": "code", "execution_count": 6, "id": "dab91803", "metadata": {}, "outputs": [], "source": [ "import seaborn as sns\n", "import pandas as pd\n", "data = {'Sales': [99, 102, 905, 120,12,12,12,22,12,12,12,430],\n", " 'Profit': [9, 12, 905, 120,120,12,102,22,192,12,12,40],\n", " 'Discount': [9, 12, 905, 120,120,12,102,22,192,12,12,40]\n", " }\n", "df=pd.DataFrame(data)" ] }, { "cell_type": "code", "execution_count": 7, "id": "39ba15f7", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAD7CAYAAABUt054AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdIElEQVR4nO3df7RcZX3v8fcnCURCEAiQGJKIoQaBWE0lxaothmIv+DPYJddcfzR4c43rNhWpXUsSvS21XXRBb68/eruyek9ViBWJR6qLFIWapoa2CgTQAPlBTEwgHBMSQQQBGzjnfO8f+znNcDizZ0/OzOyZzefF2mv2PPvXM5PD9zznu5/9PIoIzMys8yaUXQEzsxcrB2Azs5I4AJuZlcQB2MysJA7AZmYlcQA2MyuJA7CZWR2SPiZpi6Stki5PZdMkrZe0M72eWLP/Kkm7JO2QdGGj8zsAm5mNQdKrgQ8D5wKvBd4haR6wEtgQEfOADek9ks4GlgDzgYuA1ZIm5l1jUvuqnznjlIV+0qPNdj+xv+wqmLXE4LM/0XjP8dyjuwvHnKNOPj3vemcBd0TEMwCSbgPeDSwGFqV91gAbgStS+dqIOATskbSLLHjfXu8CbgGbWbUMDxVf8m0BzpN0kqQpwNuAOcCMiNgPkF6np/1nAQ/XHD+QyupqewvYzKyjYrjwrpKWA8trivoiog8gIrZLugZYDzwF3AsM5p1urNrkXd8B2MyqZbh4AE7Bti9n+xeBLwJI+guyVu0BSTMjYr+kmcDBtPsAWQt5xGxgX971nYIws0qJGC68NCJpenp9OfC7wA3AOmBp2mUpcFNaXwcskTRZ0lxgHrAp7/xuAZtZtQzlZQma9g+STgKeA1ZExOOSrgb6JS0D9gKXAETEVkn9wDayVMWKiMhNNKvdw1G6F0T7uReEVUUrekE8+9APCseco0973bivNx5uAZtZtTRxE65sDQOwpDPJ+rfNIrujtw9YFxHb21w3M7PmNXETrmy5N+EkXQGsJetesQm4K63fIGllznHLJd0t6e4n/uOnrayvmVmuVt6Ea7fcHLCkHwHzI+K5UeVHA1vTo3i5nANuP+eArSpakQM+tPP7hWPO5Hlv7Ooc8DBwKvDQqPKZaZuZWXcZeq7xPl2iUQC+HNggaSeHH7F7OfBK4A/aWC8zsyPTBamFonIDcETcKukMsgElZpHlfweAuxr1bzMzK0UP3YRr2Asiskz1HR2oi5nZ+FWlBWxm1nOq1AI2M+slMVydm3BmZr3FLeDDJqjUbnZm9mLjHLCZWUkaz3TRNRyAzaxa3AI2MytJD+WAPSOGmVXL0GDxpQFJfyhpq6Qtkm6Q9BJJ0yStl7QzvZ5Ys/8qSbsk7ZB0YaPzOwCbWbUMDxdfckiaBVwGLIyIVwMTgSXASmBDGoxsQ3qPpLPT9vnARcBqSRPzruEAbGaVEjFUeClgEnCMpEnAFLLx0BcDa9L2NcDFaX0xsDYiDkXEHmAX2TAOdTkAm1m1tKgFHBE/Af6KbN63/cATEfEdYEZE7E/77Aemp0NmcXjQMsjGzZmVdw0HYDOrlhguvNROHpGW5SOnSbndxcBcsmF5j5X0gZwrj/XQQ+7YxEfcC0LShyLi2iM93sysLZroBRERfUBfnc1vAfZExE8BJH0DeCNwQNLMiNgvaSZwMO0/AMypOX42WcqirvG0gD9db0Ptb5Wf/9JTEplZB7WuF8Re4DckTZEk4AJgO7AOWJr2WQrclNbXAUskTZY0F5hHNpVbXbktYEn31dsEzKh3XO1vlTOn/7qnJDKzzmnRgxgRcaekG4EfAIPAD8ni2lSgX9IysiB9Sdp/q6R+YFvaf0WjcdMbpSBmABcCj48qF/D95j6OmVkHtPBBjIi4ErhyVPEhstbwWPtfBVxV9PyNAvDNwNSI2Dx6g6SNRS9iZtYxPfQkXKMpiZblbHtf66tjZjZOHgvCzKwkBR4x7hYOwGZWLVVJQZiZ9RynIMzMSuIW8GH3b/tauy9hZnaYA7CZWUmid579cgA2s2oZdC8IM7Ny+CacmVlJnAM2MyuJc8BmZiXpoRZww/GAJZ0p6QJJU0eVX9S+apmZHaEWTUnUCbkBWNJlZIMNfxTYImlxzea/aGfFzMyORAwNFV7K1qgF/GHgnIi4GFgE/LGkj6VtY81/lG2omRHjC1++oSUVNTMrpIdawI1ywBMj4imAiHhQ0iLgRkmnkROAa2fEeO7R3b2TETez3teibmiSXgXUPsp7OvAnwJdT+SuAB4H/GhGPp2NWAcuAIeCyiPinvGs0agE/ImnByJsUjN8BnAz8avGPYmbWIcNRfMkRETsiYkFELADOAZ4BvgmsBDZExDxgQ3qPpLOBJcB84CJgtaSJeddoFIB/D3hkVKUGI+L3gPMaHGtm1nntSUFcAPw4Ih4im6p+TSpfA1yc1hcDayPiUETsAXYB5+adtNGMGAM5275XrN5mZh3UxM01ScuB5TVFfSmFOtoSYOSG1oyI2A+QpqafnspnAXfUHDOQyupyP2Azq5YmWra196vqkXQ08C5gVYPTjXVfLDfP4QBsZtXSILd7BN4K/CAiDqT3ByTNTK3fmcDBVD4AzKk5bjawL+/EDR/EMDPrKTFcfCnmv3E4/QCwDlia1peSPSsxUr5E0mRJc4F5wKa8E7sFbGbV0sIWsKQpwO8AH6kpvhrol7QM2AtcAhARWyX1A9uAQWBFROQmpNsegBe++gPtvoSZVcS9j3x/3OeIFj5gERHPACeNKnuMrFfEWPtfBVxV9PxuAZtZtXTBI8ZFOQCbWbW0/iZc2zgAm1m1dMEYD0U5AJtZtbgFbGZWEs8JZ2ZWEreAzczKEYMV6gUh6VwgIuKuNNzaRcADEfHtttfOzKxZVWkBS7qS7DnoSZLWA68HNgIrJf1a6nQ81nH/OcLQrONO56QpM1paaTOzuiqUA34PsACYTDYu8OyIeFLS/wbupM4TH7UjDL32ZW/snV9HZtb7qtICBgbTs8zPSPpxRDwJEBG/lNQ7v2bM7EUjKhSAn5U0JT0Pfc5IoaTjAQdgM+s+FboJd15EHAKIeF5i5SgOD8dmZtY9qtICHgm+Y5Q/CjzalhqZmY1HVQKwmVmvieidAOwZMcysWlo0LT2ApBMk3SjpAUnbJb1B0jRJ6yXtTK8n1uy/StIuSTskXdjo/A7AZlYtLQzAwOeBWyPiTOC1wHZgJbAhIuYBG9J70oNqS4D5ZA+srZY0Me/kbU9BbP3ZQ+2+xIve/GmnlV0Fs64Rg63poCXppcB5wKUAEfEsWc+wxcCitNsasofTrgAWA2vTvbM9knYB5wK317uGW8BmVi3DxRdJyyXdXbMsrznT6cBPgWsl/VDSFyQdC8yIiP0A6XV62n8W8HDN8QOprC7fhDOzSmnmQYzap3bHMAl4HfDRiLhT0udJ6YY6NNYl8q7vFrCZVUvrcsADwEBE3Jne30gWkA9ImgmQXg/W7D+n5vjZwL68CzgAm1m1NJGCyBMRjwAPS3pVKrqAbMr5dRx+EG0pcFNaXwcskTRZ0lxgHrAp7xpOQZhZpbR4LIiPAtdLOhrYDXyIrOHaL2kZsBe4BCAitkrqJwvSg8CKNJZOXQ7AZlYpMdi6ABwRm4GFY2y6oM7+V1FnlMixOACbWbX00DBhTeeAJX25HRUxM2uFGC6+lK3RjBjrRhcB50s6ASAi3lXnuP+cEUMTj2fChGPHX1MzsyK6ILAW1SgFMZssofwFsv5sIsuH/J+8g2r71k06elbvjIxhZj2vG1q2RTVKQSwE7gE+BTwRERuBX0bEbRFxW7srZ2bWrBgsvpSt0XjAw8BnJX09vR5odIyZWZl6qQVcKJhGxABwiaS3A0+2t0pmZkeucgF4RER8C/hWm+piZjZ+MdaQDN3J6QQzq5TKtoDNzLpdDLsFbGZWiuEhB2DrIM86YnaYUxBmZiVxCsLMrCQ9NCu9A7CZVUsvtYA9I4aZVcrwkAovjUh6UNL9kjZLujuVTZO0XtLO9Hpizf6rJO2StEPShY3O7wBsZpUSwyq8FHR+RCyIiJGB2VcCGyJiHrAhvUfS2cASYD5wEbBa0sS8EzsAm1mlRKjwcoQWA2vS+hrg4prytRFxKCL2ALuAc/NO5ABsZpXS4gHZA/iOpHvSOOcAMyJiP0B6nZ7KZwEP1xw7kMrqauomnKTfJIvoWyLiO80ca2bWCcNNtGxrJ49I+tJ45iPeFBH7JE0H1kt6IO90Y5Tl9snIbQFL2lSz/mHgb4DjgCslrcw5brmkuyXdPTz8dN4lzMxaqpkURET0RcTCmqXv+eeKfen1IPBNsgboAUkzAdLrwbT7ADCn5vDZwL68ujZKQRxVs74c+J2I+DTwX4D31/8CDn8oT0dkZp3Uql4Qko6VdNzIOlnc2wKsA5am3ZYCN6X1dcASSZMlzQXmAZvI0SgFMSF1sZgAKCJ+ChART0vqgvHkzcyer4X9gGcA35QEWaz8akTcKukuoF/SMmAvcAlARGyV1E82jdsgsCIihvIu0CgAH082JZGAkPSyiHhE0lTGzneYmZWqmRxwnojYDbx2jPLHgAvqHHMVcFXRazSakugVdTYNA+8uehEzs04ZR/eyjjuiR5Ej4hlgT4vrYmY2bh4LwsysJK1KQXSCA7CZVcpwDw3G4wBsZpXiFrB11CtPOLXsKph1jcrfhDMz61ZuAZuZlaSHOkE4AJtZtQwN984gjw7AZlYpPTQpsgOwmVVL9NAoCQ7AZlYpwz2UBHYANrNKGe6hFnCjAdlfL+mlaf0YSZ+W9I+SrpF0fGeqaGZWXKDCS9ka3S78EvBMWv882fCU16Sya+sd5BkxzKwsQ6jwUraGA7JHxMjA6wsj4nVp/d8lba53UJrWow9g0tGzeigjY2a9rpd6QTRqAW+R9KG0fq+khQCSzgCea2vNzMyOwHATSxGSJkr6oaSb0/tpktZL2pleT6zZd5WkXZJ2SLqw0bkbBeD/AbxZ0o+Bs4HbJe0G/i5tMzPrKm3IAX8M2F7zfiWwISLmARvSeySdDSwB5gMXAaslTcw7caMZMZ4ALk0T052e9h+IiANFa25m1kmtHI1S0mzg7WTTDH08FS8GFqX1NcBG4IpUvjYiDgF7JO0im0X59nrnL9QNLSJ+AdzbfPXNzDqrmW5okpaTzfg+om/U1PSfAz4BHFdTNiMi9gNExH5J01P5LOCOmv0GUlld7gdsZpWSOw3xKLUdBkaT9A7gYETcI2lRgdONFflzOyE4AJtZpQyrZTmINwHvkvQ24CXASyV9BTggaWZq/c4EDqb9B4A5NcfPBvblXaB3hg0yMysgmlhyzxOxKiJmp9nhlwD/EhEfANYBS9NuS4Gb0vo6YImkyZLmAvOATXnXaHsLeOIEx/h22/PkI2VXwaxrdKAf8NVAv6RlwF7gEoCI2CqpH9gGDAIrIiI3I+IUhJlVSjvm5IyIjWS9HYiIx4AL6ux3FVmPiUIcgM2sUrrhEeOiHIDNrFJ6aFZ6B2Azq5ZeGgvCAdjMKqWXRv9yADazSnEKwsysJL2Ugmg0I8Zlkubk7WNm1k2GVHwpW6OnJP4cuFPSv0n6fUmnFDlp7YwYQ0NPjb+WZmYFtXo84HZqFIB3kz3P/OfAOcA2SbdKWpqGqBxTRPRFxMKIWDhx4tQWVtfMLF+VAnBExHBEfCcilgGnAqvJBhve3fbamZk1qVVjQXRCo5twz8uSRMRzZANOrJN0TNtqZWZ2hKrUC+K99TZExC9bXBczs3HrhtRCUY2mJPpRpypiZtYKzQzIXjb3AzazSqlSCsLMrKf0UgrCo6WbWaW0qheEpJdI2iTpXklbJX06lU+TtF7SzvR6Ys0xqyTtkrRD0oWN6tr2FvDQcC/9PupNb3/Zr5VdBbOuMdy6DmaHgN+OiKckHQX8u6RbgN8FNkTE1ZJWAiuBKySdTTZ10XyyLrv/LOmMvFkx3AI2s0oZamLJE5mRR3mPSksAi4E1qXwNcHFaXwysjYhDEbEH2AWcm3cNB2Azq5RmnoSrHTYhLctrzyVpoqTNZDMfr4+IO4EZEbEfIL1OT7vPAh6uOXwgldXlm3BmVinN9IKIiD6gL2f7ELBA0gnANyW9Oud0Y105Nx/iFrCZVcowUXgpKiJ+TjYp50XAAUkzAdLrwbTbAFA7euRsYF/eeR2AzaxSWtgL4pTU8iUNvfAW4AGy4RiWpt2WAjel9XXAEkmTJc0F5gGb8q7hFISZVUoL+13NBNZImkjWWO2PiJsl3Q70S1oG7AUuAYiIrZL6gW3AILAirwcEOACbWcUMtagbWkTcB7ygj2dEPAZcUOeYq4Cril4jNwBLOpqsX9u+iPhnSe8D3ghsB/rS6GhmZl2jl548aNQCvjbtM0XSUmAq8A2y6H8uh/Mgz5O6ciwH0MTjmTDh2JZV2MwsTwsfxGi7RgH4VyPiNZImAT8BTo2IIUlfAe6td1Bt145JR8/qnW/DzHpeLwWcRgF4QkpDHAtMAY4HfgZMJnsqxMysq1QpBfFFsm4XE4FPAV+XtBv4DWBtm+tmZta0Vt2E64RGA7J/VtLX0vo+SV8m6wv3dxGR27/NzKwMVcoBExH7atZ/DtzYzgqZmY1H74Rf9wM2s4qpVAvYzKyXVOkmnJlZTwm3gK2TvvXID8uuglnXqEwvCDOzXuMUhJlZSYbDLWAzs1L0Tvh1ADaziumlbmieEcPMKiWa+C+PpDmSvitpu6Stkj6WyqdJWi9pZ3o9seaYVZJ2Sdoh6cJGdXUANrNKGSQKLw1PBX8UEWeRjX+zQtLZwEpgQ0TMAzak96RtS4D5ZHPHrU6zadTlAGxmldKqFnBE7I+IH6T1X5BNRDELWAysSbutAS5O64uBtRFxKCL2ALvIxk2vq2EOWNKvAO8mm+1zENgJ3BARTzQ61sys05rphlY7eUTSl8YzH73fK8imJ7oTmBER+yEL0pKmp91mAXfUHDaQyupqNCXRZcA7gduAXwc2kwXi2yX9fkRszDvezKzTooluaLWTR9QjaSrwD8DlEfGkpLq7jnWJvHM3agF/GFiQZsH4DPDtiFgk6f+RTcX8ggnrUoU9JZGZlaKVvSAkHUUWfK+PiG+k4gOSZqbW70zgYCofIGugjpgN7CNHkRzwSJCeDBwHEBF7yZkRIyL6ImJhRCx08DWzThoiCi95lDV1vwhsj4jP1Gxax+H5MJeSNUZHypdImixpLjAPyB03vVEL+AvAXZLuAM4DrkkVO4VsaiIzs67Swhbwm4APAvdL2pzKPglcDfRLWgbsBS4BiIitkvqBbWT3y1ZExFDeBdQoXyJpPnAWsCUiHmj2E3hSTjMravDZn9RNsBb11jlvLRxzbnn4lnFfbzyKzIixFdjagbqYmY2bB+MxMyuJxwM2MytJL40F4QBsZpUyFL2ThHAANrNKcQrCzKwkHpDdzKwkvRN+HYDNrGJ8E87MrCQOwGZmJXEvCDOzkrgXhJlZSZoZD7hsucNRSjpe0tWSHpD0WFq2p7ITOlRHM7PChonCS9kajQfcDzwOLIqIkyLiJOD8VPb1dlfOzKxZEVF4KVujAPyKiLgmIh4ZKYiIRyLiGuDl9Q6StFzS3ZLuHh5+ulV1NTNraIjhwkvZGgXghyR9QtKMkQJJMyRdATxc7yDPiGFmZRmOKLw0IulLkg5K2lJTNk3Sekk70+uJNdtWSdolaYekCxudv1EAfi9wEnCbpJ9J+hmwEZhGGgXezKybtGpa+uQ64KJRZSuBDRExD9iQ3iPpbGAJMD8ds1rSxLyT5wbgiHg8Iq6IiDMjYlpazoqIK4CLi9TezKyTWtkCjoh/5YXTry0G1qT1NRyOhYuBtRFxKCL2ALuAc/POX2RSzno+PY5jzczaosUt4LHMiIj9AOl1eiqfxfNTswOprK7cfsCS7qu3CZhRZ5uZWWmaGQ1N0nJgeU1RX0T0HeGlx5pfLrcyjR7EmAFcSNbtbPSFvl+8XmZmndHMo8gp2DYbcA9ImhkR+yXNBA6m8gFgTs1+s4F9eSdqlIK4GZgaEQ+NWh4kuxlnZtZVOpCCWAcsTetLgZtqypdImixpLjAP2JR3otwWcEQsy9n2vsLVNTPrkGjhYDySbgAWASdLGgCuBK4G+iUtA/aSeoRFxFZJ/cA2YBBYERFDuedv99MgG2dcUv7jJhX3rqfuKbsKZi3x5NO7x8qjNuW0k15TOOY89Nh9477eeHgwHjOrlG54xLgoB2Azq5RuGGSnKAdgM6uUoeHyx3goygHYzCrFA7KbmZXEOWAzs5L0Ug74iMeCkHRLKytiZtYKvTQge6OxIF5XbxOwoOW1MTMbpyrdhLsLuI2xB5k4od5BtQNcfPy41/HOY04/0vqZmTWll1IQjQLwduAjEbFz9AZJuTNikAa48JNwZtZJ3ZBaKKpRAP5T6ueJP9raqpiZjV8zw1GWrdFgPDfmbD4xZ5uZWSl6qR+wZ8Qws0pp5ZRE7eYZMcysUoZbOBxlu3lGDDOrlCrdhBuZEWPz6A2SNrajQmZm41GZAOwZMcys1/RO+O3AjBi9SNLyccyMagX4O24/f8fdbzy9IKpseeNdbJz8Hbefv+Mu5wBsZlYSB2Azs5I4AI/NebP283fcfv6Ou5xvwpmZlcQtYDOzkrwoArCkT0naKuk+SZslvT5n3+skvaeT9asCSUPpu90i6euSpjR5/A3p3+cPJf2ZpLek8subPVcvqvn+tkq6V9LHJU1I2xZK+uuS6/fJMq9fVZVPQUh6A/AZYFFEHJJ0MnB0ROyrs/91wM0NRoKzUSQ9FRFT0/r1wD0R8Zma7RMjYqjOsS8D7oyI08bY9iCwMCIebU/Nu8Oo72868FXgexFxZbk1y9TWz1rnxdACngk8GhGHACLi0YjYJ+lPJN2VWmx9kl4w64ekcyTdJukeSf8kaWYqv0zSttRiW9vhz9ML/g14paRFkr4r6avA/ZJeIulaSfdL+qGk89P+3wGmpxbgb438FSLpMuBU4LuSvlvWh+m0iDhI1of3D5RZJOlmAElvTt/T5vQdHpfKP5G+13slXZ3KFki6I/2cflPSial8o6SFaf3k9EsOSZdK+oakWyXtlPSXqfxq4Jh0zes7/X1UWjMT2PXiAkwFNgM/AlYDb07l02r2+XvgnWn9OuA9wFFkAw6dksrfC3wpre8DJqf1E8r+jN2wAE+l10nATcD/BBYBTwNz07Y/Aq5N62cCe4GXAK8AttSc6zrgPWn9QeDksj9fp76/UWWPkw2ItYjsrzKAfwTelNanpu/7relndUoqn5Ze76v5ef8z4HNpfSPZXxUAJwMPpvVLgd3A8enf5SFgTr36eRn/UvkWcEQ8BZxD1qL4KfA1SZcC50u6U9L9wG8D80cd+irg1cB6SZuB/wXMTtvuA66X9AFgsO0fojcck76nu8kC6xdT+aaI2JPWf5Pslx0R8QDZ/+BndLievWSsuRi/B3wm/XVwQkQMAm8h+8X2DEBE/EzS8Wn7bem4NcB5Ba65ISKeiIj/ALYBL0gLWes0Gg2tEiLLPW4ENqaA+xHgNWStgIcl/SnZb/xaArZGxBvGOOXbyX6Y3wX8saT56X+EF7NfRsSC2oKU1Xm6tqiTFeplkk4HhoCDwFkj5RFxtaRvAW8D7kg3K0VzY9AMcjj9OPrn/lDN+hAvkhhRlsq3gCW9StK8mqIFwI60/qikqWQph9F2AKekm3hIOkrS/HRnek5EfBf4BNns0L45Ucy/Au8HkHQG8HIO/1vU8wvguDbXq6tIOgX4W+BvIv39X7PtVyLi/oi4huyvjTPJcuj/faS3iKRpEfEE8Lik30qHfpBshnPI0jrnpPWiPX6ek3TUkX4mG9uL4bfbVOD/SjqB7Df/LrJ0xM+B+8l+GO8afVBEPKusO9pfpz/nJgGfI8slfyWVCfhsRPy83R+iIlYDf5v+ChkELo2sZ0reMX3ALZL2R8T5eTv2uJEUzlFk383fk/XeGe3ydPNyiCxFcEv6DhcAd0t6Fvg28ElgKdn3PYUst/uhdI6/AvolfRD4l4L16wPuk/SDiHj/kXxAe6HKd0MzM+tWlU9BmJl1KwdgM7OSOACbmZXEAdjMrCQOwGZmJXEANjMriQOwmVlJHIDNzEry/wGs8y0gnsUn0wAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.heatmap(df);" ] }, { "cell_type": "code", "execution_count": 13, "id": "8042baf4", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAD7CAYAAABUt054AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAw80lEQVR4nO3dd5xU9fX/8dd7l6UJ0llgQUVFFIxiiSZWFBULirEkWFERIjGxJV8BzU+jiYqNGE1MJBJLohCiRrCLKFgRUAEFQYqIK733Zcv5/TF3YSC7M4M7s3fKefq4j5n9zL1zP3PAw2c/c+/nyMxwzjlX+/LC7oBzzuUqT8DOORcST8DOORcST8DOORcST8DOORcST8DOORcST8DOOVcNSddL+kLSTEk3BG3NJY2TNDd4bBa1/xBJ8yTNkdQz3vt7AnbOuSpIOhjoDxwFHAr0ktQJGAyMN7NOwPjgZyR1AfoAXYHTgUcl5cc6R53UdT/iy24H+p0eKfbZdA+xyw4X2xzV9D008EcJ/w9hf50U63wHAZPMbDOApInAT4DeQPdgn6eACcCgoH2UmZUAX0uaRyR5f1TdCXwE7JzLKspTwlscXwAnSGohqSFwJtABKDSzJQDBY+tg/yLg26jji4O2aqV8BOycc7UpgcS6Y19pADAgqmm4mQ0HMLMvJd0LjAM2AtOBslhvV0VbzNG4J2DnXFbZnQQcJNvhMV4fAYwAkHQ3kVHtMkltzWyJpLbA8mD3YiIj5ErtgcWxzu9TEM65rJLEKQgktQ4e9wLOA0YCY4G+wS59gTHB87FAH0n1JHUEOgGTY71/zo+Am118GU3PuxBJrHnhP6x55mnqHdCZNrfeQV7DhpQu/o7Ft/yGik2bwu5q1uh83eXs1/9CkJj/9/8w509Phd2lrJPLMc7LT+q48nlJLYBS4FozWyNpKDBaUj9gEXAhgJnNlDQamEVkquJaMyuP9eY5nYDr7deJpuddyMJLf4qVlrLXX/7Oxvcm0vb2P7B82H1s/mQKTXqfR4u+/Vjx6MNhdzcrNOnaif36X8gbR11IxbZSTnr9cRa/MoEN874Ju2tZI9djvDtTEPGY2fFVtK0CelSz/13AXYm+f05PQdTdd1+2zpiObd0K5eVs/mQKjU8+hbp7d2TzJ1MA2DTpQxr3OC3knmaPPQ/aj5WTplO+ZStWXs7yiVNo/5NTw+5WVsn1GCdzCiLV4iZgSQdKGiTpYUl/Cp4fVBudS7WSeXNpcMQPyW/SFNWvzx7HnUhBYVtK5s+lUfeTAdjz1NOp06ZtyD3NHuu++IrWJxxJ3eZNyW9Qn3ZnnkDDDm3C7lZWyfUYZ1ICjjkFIWkQcBEwih2Tye2BkZJGmdnQao7bfmnH79oX8tMWTZPW4WTa9vUCVj3xd/b62wgqNm+m5KvZWHkZS26/hcJBv6XlgGvZOPFtrLQ07K5mjfWzFzDr3sc5edw/KNu4mTXT52BlMafJ3G7K9RinQ2JNlGKVJJL0FdDVzEp3aa8LzAxuxYspk+6Ea/WrGylbtpQ1o0dub6u71z60u/s+Fl760xB7Flsm3wl36F03srl4GXP/+mzYXclamRTjZNwJ1+i2Hgn/D7HxzvGhZut4UxAVQLsq2tsGr2W8/GbNAajTpi2NTz6Vda+9sr0NiRb9r2HNf0aF2MPsU69VJL4NO7Sl/XmnsXDkyyH3KPvkcozz8vMS3sIW7yqIG4Dxkuay4xa7vYD9gV+msF+1pv2DD5PfpClWVsbSe+6kYsN6ml18Gc1+dgkAG8a/yboxL4Tcy+xy/POPUK9FUypKy5h67R2Url0fdpeyTi7HOGumIAAk5RFZUKKIyK12xcCUeNe3VcqkKYhMlclTEM5FS8YURNO7eib8P8TaW98INVvHvQ7YzCqASbXQF+ecq7FMGgHn9I0Yzrns4wnYOedCklcn/C/XEuUJ2DmXVXwEHCUvg4KRufxLOOcqeQJ2zrmQSJ6AnXMuFD4Cds65kGRSAs6crwudcy4B+XWU8BaPpBslzZT0haSRkupLai5pnKS5wWOzqP2HSJonaY6knvHeP+dGwG1u/wN7HN+d8tWrWfjTcwDI27MJ7YYOo6BdUaQCxqAbqdiwnoZHH0Or625CdQqwslJWPHQ/m6d8HPInyDxHj7ibol7d2bp8Fa/+4GwAut13M0Vnn0TFtlI2zl/EpCuHULpuQ8g9zVwe4x3ykzQHLKkIuA7oYmZbgmoXfYAuwHgzGyppMDAYGCSpS/B6VyJr6Lwl6YBYdw3n3Ah43UsvUvzLATu1tbiyP5snf8TX557O5skf0fzK/gCUr11D8fUDWfiz3iy5bQhtfn9vGF3OeAuefIF3Tr96p7al4z7g1YN78dqh57Dhq4V0HfLzkHqXHTzGO+TnKeEtAXWABpLqAA2JFNnsDVTWeHoKODd43hsYZWYlZvY1MI/IMg7VyrkEvOXTqZSvW7tTW6MTT2bdy5G6euteHkPj7pFqIyVzvqR85QoAts2fS17deqigoFb7mw1WvDeVbavX7dS2dNwHWHlkYLBy0jQats+dBcNTwWO8Q76U8BaLmX0HPECk7tsSYJ2ZvQkUmtmSYJ8lQOvgkCJ2LFoGkXVzimKdI+cScFXyW7TYnmjLV64gv3nz/9mnUY/T2DrnS1+cPQX2u+p8Fr/2btjdyGq5FOP8vMQ3SQMkTY3atv96HMzt9gY6EplS2EPSpTFOXVVGj3mR/veeA5Z0pZk98X2PzyR1992fVtf9muJrr46/s9stXW+5hoqychY+MzbsrmStXIvx7swBm9lwYHg1L58CfG1mKwAkvQAcAyyT1NbMlkhqCywP9i8GOkQd357IlEW1ajICvqO6F6L/Vfn3yrU1OEXtKF+1ivyWrQDIb9mK8tWrt79Wp3UhRQ8+wtLbBlNa/G11b+G+h46Xn0tRr+58eMlvwu5K1srFGNfNz0t4i2MR8CNJDRW5u6MH8CUwFugb7NMXGBM8Hwv0kVRPUkegEztKuVUpXk24GdW9BBRWd1z0vypzDj8o7e+T3fju2zTp1ZvVTz5Ok1692TjxbQDyGjWm6OG/seKRYWyZ/lnIvcwubXseT5dB/XnrxEsp37I17O5kpVyNcX6SLgM2s48lPQd8CpQBnxHJa42A0ZL6EUnSFwb7zwyulJgV7H9tvHXT49WEWwb0BNbs+hLwoZlVVa5oJ+mWgNve/QANjziK/KZNKVu9ilV/+zMbJoyn3b3DKGjTjtKli1l8841UrF9H837X0OKq/mxb9M3244t/cTXla1bHOEPt++Sz9K4OdcyzD1LY/SjqtWzG1mWrmHH7I3QdMoC8enXZtmotACsnTWfKwNvD7WgGy5YYJ2NB9qNH9kk453x80ahQ79qIl4BHAE+Y2ftVvPasmV0c7wTploCzUbonYOcSlYwEfMyoixLOOR/2GZm+FTHMrF+M1+ImX+ecq20JXt+bFnLuTjjnXHarm6xJ4FrgCdg5l1WSdStybfAE7JzLKp6AnXMuJPEv700fKU/ABx7dJNWncEeH3QHnkiMZ3+z7CNg550LiV0E451xI/CoI55wLiU9BpLnrTvop/Y/rjRB//2AMf3r73zRruCf/vvoP7NOiLQtXLeGnj9/K2s0b2Lt5W768fSRzli0CYNLXXzBw5H0hf4L05zFOPY9x1XwKIo11bbcv/Y/rzVFDr2JbeRmv/+ohXvn8Q/of15vxs6dw75v/ZNBplzH4tMsZ/OJfAJi/8jsOu/vykHueOTzGqecxrl4mjYAz6IKN5DiozT5M+nomW0pLKK8oZ+JXn/KTbifS+9DjeWrSqwA8NelVzu12Qsg9zVwe49TzGFdvdxZkD1vcLkg6UFIPSY12aT89dd1KnS8WL+CE/bvRfI89aVBQjzMPPoYOzQopbNycpetXAbB0/SpaN95e6JSOLdrx6S1PMeHGRzlu/0PD6nrG8Binnse4eskqSVQb4q0HfB1wLZFFiEdIut7MKhcfvht4PcX9S7rZSxdy75v/ZNx1j7CxZDPTi+dSVlFW7f5L1q9kr1t7s3rTeg7fqzMv/vw+uv7+IjZs3VyLvc4sHuPU8xhXryCD5oDjjYD7A0eY2blAd+D/Sbo+eK3aTxldEYNZy6vbLTT/+PAljrinLycOG8jqzeuZu7yYZRtW02bPFgC02bMFyzdElkDeVlbK6k3rAfh00Rzmr/yOA1rvFVrfM4XHOPU8xlXLV+Jb2OIl4Hwz2whgZguJJOEzJA0jRgI2s+FmdqSZHUmX1tXtFppWwa9lHZoVcl637oyc+iZjZ7xH3x+dCUDfH53JmOnvAdCyUVPyFAlTx5bt6NS6PQtWxizz5PAY1waPcdXylPgWi6TOkqZFbesl3SCpuaRxkuYGj82ijhkiaZ6kOZJ6xutrvKsglkrqZmbTAMxso6RewD+AH8R783T1/IB7aLFHE0rLy7h21AOs3byBoW88zeir76LfseewaPVSLvz7rQCc0Okw7uzVn7KKcsorKrjm2ftYs3l9yJ8g/XmMU89jXLUkliSaA3QDkJQPfAf8FxgMjDezoZIGBz8PktQF6AN0JVJF+S1JB8QqSxSvIkZ7oMzMllbx2rFm9kG8D6GBP/KKGM65hNhfJ9U4fd78wYCEc859xw5P6HySTgNuN7NjJc0BukdVRZ5gZp0lDQEws3uCY94AfmdmH1X3vvEqYhTHeC1u8nXOudpWsBuXl0kaAAyIahoeFBXeVR9gZPC80MyWAARJuHKetQiYFHVMcdBWrZy7EcM5l912ZwoiuoJ7dSTVBc4BhsR5u6rOHHM07gnYOZdV8pJ/fe8ZwKdmtiz4eZmktlFTEJWXehUDHaKOaw/E/KYzDe4Fcc655EnBZWgXsWP6AWAs0Dd43hcYE9XeR1I9SR2BTsDkWG/sI2DnXFZJ5n0YkhoCpwI/j2oeCoyW1A9YBFwIYGYzJY0GZgFlwLWxroCAWkjA82dm3502zrn0lcxbjM1sM9Bil7ZVQI9q9r8LuCvR9/cRsHMuq+zOVRBh8wTsnMsqeZ6AnXMuHOmwylmici4Btxp0Bw2POZHyNaspvuI8AJoPvImGx5yIlZVS9t23rBh6GxUbNwDQ9JJ+ND7rJ1hFBav+NJQtUz4Ms/sZw+Oceh7jqmXQYmi5dxnahtfHsuT/Bu7UtmXqRxRfcR7fXXkBpcXf0PTSfgAU7L0ve/Q4nW/7/oSl/zeQljfdmlm/34TI45x6HuOqZdNqaFln6/RPqFi/bqe2LVM+gvLI1SJbZ84gv1UhAHscdxKbxr8OpaWULfmO0u8WUe+gg2u9z5nI45x6HuOqJWs1tFrpa9gdSDeNz/wJWya9D0B+q9aULd+xDlHZimXUaVkYVteyisc59XI1xgV5SngLW9w5YElHAWZmU4Ll1k4HZpvZqynvXS1rell/KC9j47hXIg1VTub74m415XFOvVyOcTpMLSQqXkmi24ncB11H0jjgaGACMFjSYcFFx1Udt32FoT/sX8RFbZsntdOp0Oj0c2j44xNYcmP/7W3ly5dRp3Wb7T/XaVVI2cr0q/CRSTzOqZfrMU7BWhApE28K4gLgWOAEIrXhzjWzO4GewM+qOyi6IkYmJN8GRx1L04uvZOmQ67CSrdvbN30wgT16nA4FBdRpW0RB+70p+fKLEHua2TzOqecxzqwv4eJNQZQF9zJvljTfzNYDmNkWSRWp717ytb7tXuofdiT5TZqy13PjWPPEozS9pB+qW5e2wx4DoGTWDFY++AdKF85n0ztv0uHpF7Hyclb+8W6oyMiPXes8zqnnMa5aJo2A41XE+Bg4ycw2S8ozs4qgvQnwjpkdHu8EC044JDsnmpxzSbfvuzNqnD2fm3ddwjnngv0fDjVbxxsBn2BmJQCVyTdQwI7l2JxzLm1UFh/NBPFKEpVU074SWJmSHjnnXA1k0hREzt2K7JzLbpmUgDNnrO6ccwnIkxLe4pHUVNJzkmZL+lLSjyU1lzRO0tzgsVnU/kMkzZM0R1LPuH2t4Wd1zrm0krcb/yXgT8DrZnYgcCjwJTAYGG9mnYDxwc8EN6r1AboSuWHtUUn5sd485VMQk96rchrZJdGPjq8XdhecSxt1krTIkKQ9idwDcQWAmW0DtknqDXQPdnuKyM1pg4DewKjgu7OvJc0DjgI+qu4cPgJ2zmWVPOUlvEkaIGlq1DYg6q32BVYAT0j6TNLjkvYACs1sCUDw2DrYvwj4Nur44qCtWv4lnHMuq+zOl3BmNhwYXs3LdYDDgV+Z2ceS/kQw3VCN3V5ww0fAzrmsksQv4YqBYjP7OPj5OSIJeZmktgDB4/Ko/TtEHd8eWByzr7v52ZxzLq0lKwGb2VLgW0mdg6YeRErOj2XHjWh9gTHB87FAH0n1JHUEOgGTY50j56cgjh5xN0W9urN1+Spe/cHZAHS772aKzj6Jim2lbJy/iElXDqF03YaQe5pZvFxO6nmMq5bkO+F+BTwjqS6wALiSyMB1tKR+wCLgQgAzmylpNJEkXQZcG6ylU31fk9nTTLTgyRd45/Srd2pbOu4DXj24F68deg4bvlpI1yE/D6l3mcvL5aSex7hqdZSX8BaPmU0LVnY8xMzONbM1ZrbKzHqYWafgcXXU/neZ2X5m1tnMXov3/tn5J7AbVrw3lW2rdy7rsnTcB1hQ1mXlpGk0bN+mqkNdDF4uJ/U8xlXbnasgwrbbPZD0dCo6kq72u+p8Fr/2btjdyDq5Wi6nNuVqjJN5J1yqxauIMXbXJuAkSU0BzOycao7bXhGjH605maY17mgYut5yDRVl5Sx8ZtcwuJrI5XI5tSWXY5wOiTVR8b6Ea09kQvlxIn9aAo4EHox1UPS1dc+qc0b+KXe8/FyKenVnfI8rwu5KVsn1cjm1IddjnA5TC4mK19MjgU+AW4F1ZjYB2GJmE81sYqo7F5a2PY+ny6D+TDxnIOVbtsY/wCXEy+Wknsc4uV/CpVrMihjbd5LaA38ElgHnmNleiZ4g3UfAxzz7IIXdj6Jey2ZsXbaKGbc/QtchA8irV5dtq9YCsHLSdKYMvD3cjsaQjmtBRJfLKV+9eqdyOeXr1gI7yuVA5Ffmxmeei5WXs+qR+9jy8fsh9j4zZGOMk1ERY9bqexPOOV2aDwp1viKhBLx9Z+ks4FgzuyXRY9I9AWeDdEzAzn0fyUjAs9fcn3DOObDZ/6V1SaKdmNkrwCsp6otzztVYNn0J55xzGUVpMLebKE/AzrmskuBC62nBE7BzLqvk52VOWsucnrpqedURly32TcJ7yEfAzjkXjky6EcMTsHMuq/gI2DnnQpJJI+DM6alzziUgX3US3uKRtFDS55KmSZoatDWXNE7S3OCxWdT+QyTNkzRHUs9475/zI2CviJF6HuPU8xjvkILrgE8ys5VRPw8GxpvZUEmDg58HSeoC9AG6Au2AtyQdEKsqRs6PgL0iRup5jFPPY7xDLSzI3ht4Knj+FHBuVPsoMysxs6+BecBRMfv6fXuQLbwiRup5jFPPY7yDyE94S4ABb0r6JFjnHKDQzJYABI+tg/Yi4NuoY4uDtmrt1hSEpOOIZPQvzOzN3Tk2U+131fl88++4pZ1cDXiMUy+XYrw7I9vo4hGB4cF65pWONbPFkloD4yTNjvV2VbTFXBgoZk8lTY563h/4M9AYuD2Y+6juuAGSpkqa+jZrY50irXlFjNTzGKdersVY5CW8mdnwoOhm5RadfDGzxcHjcuC/RAagyyS1BQgeK1e2LwY6RB3eHlgcq6/x/qkoiHo+ADjVzO4ATgMuqe6g6A+VqeWIKitifHjJb8LuStbyGKdeLsY4P69OwlsskvaQ1LjyOZG89wUwFugb7NYXGBM8Hwv0kVRPUkegEzCZGOJNQeQFl1jkEVk7eAWAmW2SVBbn2IxVWRHjrRMv9YoYKeIxTr1cjXESF+MpBP6ryPKWdYBnzex1SVOA0ZL6AYuACwHMbKak0UTKuJUB18a6AgLiLMguaSFQQWRuw4BjzGyppEbA+2bWLd4nSPcF2bOhIka68xinXrbE+GKbU+PFfDeXvZRwzmlY5+zMqYix/SCpIZFvAr+Ot2+6J2DnXPpIRgLeWv5Kwjmnfv5ZmVMRo5KZbQbiJl/nnKttvhaEc86FJJPWgvAE7JzLKoms8ZAuMqenzjmXAK8J52rVEYdlzl8451JNu/O1f8gFlD0BO+eyi1Ukvq8nYOecS6LdScAh8wTsnMsuFbtxk25CC6Kljidg51x2qfARcMbwSgKp0eb2P7DH8d0pX72ahT89B4C8PZvQbugwCtoVUbr4OxYPupGKDetpePQxtLruJlSnACsrZcVD97N5yschf4L05zGuRgZNQeT81+deSSA11r30IsW/HLBTW4sr+7N58kd8fe7pbJ78Ec2v7A9A+do1FF8/kIU/682S24bQ5vf3htHljOMxroZVJL6FLOcTsFcSSI0tn06lfN3andoanXgy616OrNy37uUxNO7eA4CSOV9SvnIFANvmzyWvbj1UUICLzWNcjWxJwJKOlrRn8LyBpDskvSTpXklNaqeL4drvqvNZ/Nq7YXcjK+S3aLE9CZSvXEF+8+b/s0+jHqexdc6XWGlpbXcvK3iMicwBJ7qFLN4I+B/A5uD5n4AmwL1B2xPVHeQVMdz3UXff/Wl13a9Zdld6L5mYyXIixhVliW8hi7sgu5lV9vJIMzs8eP6+pGnVHRSU9RgOmbscZWUlgfE9rgi7K1mjfNUq8lu2iozMWraifPXq7a/VaV1I0YOPsPS2wZQWfxvjXVwsHmPSYmohUfFGwF9IujJ4Pl3SkQCSDgCy9PeXHZUEJp4zMKcqCaTaxnffpkmv3gA06dWbjRPfBiCvUWOKHv4bKx4Zxpbpn4XZxYznMQaz8oS3REjKl/SZpJeDn5tLGidpbvDYLGrfIZLmSZojqWfc945TEaMJkamH44GVwOFEyi5/C1xnZtPjnSDdR8DZUEkgHdeCaHv3AzQ84ijymzalbPUqVv3tz2yYMJ529w6joE07SpcuZvHNN1Kxfh3N+11Di6v6s23RN9uPL/7F1ZSvWR3jDC4bY9z50y9rfHOwrX464Zyj5pfHPZ+km4AjgT3NrJek+4DVZjY0KE7czMwGSeoCjCRSuLMd8BZwQKyyRAlVxAgK0+1LZMqi2MyWJfDZgPRPwNkgHROwc99HUhLwqicTT8Atroh5PkntgaeAu4CbggQ8B+huZkuCqsgTzKyzpCEAZnZPcOwbwO/M7KPq3j+hGzHMbAMQd7TrnHOh2405YEkDiFR8rzR8l9L0DwE3A42j2grNbAlAkIRbB+1FwKSo/YqDtmrl/J1wzrkssxtXN0RfMLArSb2A5Wb2iaTuCbxdVaPpmKNxT8DOueySvOt7jwXOkXQmUB/YU9K/gGWS2kZNQSwP9i8GOkQd3x5YHOsEPnnonMsuSboTzsyGmFl7M9sH6AO8bWaXAmOBvsFufYExwfOxQB9J9SR1BDoBk2OdI+Uj4Lp1U30G9/nMzLnu0blYOifjTVJ/HfBQYLSkfsAi4EIAM5spaTQwCygDro11BQT4FIRzLtukIAGb2QRgQvB8FdCjmv3uInLFREI8ATvnskt5+LcYJ8oTsHMuu2TQrciegJ1z2SUNVjlLVE4n4Abt2/DDEfdRv01LrKKCr0eMZt6fn+YH99xM27MiFTE2LVjE1P5eEeP78hjXDo9zlIrMufk2oVuRa+K5eul7K3L9Nq2o36YVa6fNok6jPegx6Xk+vOBaGrZvw/J3JmHl5fzgrt8A8PmtD4Tc28zkMa4d2RLnC0rm1PxW5Ln3JH4rcqchoRamz+nrgLcuXcHaabMAKNu4iQ2zF9CgqJBlb+2oiLHq42k0KPKKGN+Xx7h2eJyjZMuC7JKuk9Qh1j7ZouHeRTQ99CBWT955yYt9rjifpW94RYxk8BjXjpyPc1l54lvI4o2Afw98LOk9Sb+Q1CqRN42uiDGufG2NO5lq+Xs05MejHmbab+6mbMOm7e0HDroGKytn0UiviFFTHuPa4XEme0bAwAIi9zP/HjgCmCXpdUl9gyUqq2Rmw83sSDM78tT8psnrbQqoTh1+/O+HWTTqJRaPGbe9fe9Lz6Xtmd2Z3Pc3IfYuO3iMa4fHOVBhiW8hi3cVhJlZBfAm8KakAuAM4CLgASChEXE6O/Kxu9gwewFz//Tk9rbC046n82/6M+GUS70iRhJ4jGuHxzmQBiPbRMWriPGZmR1WzWsNzGxLvBOk81UQLY45gpPeeZa1n8/Z/of2xW3D6Dbst+TVrcu21WsBWDV5Op/9Mn0rYqQzj3HtyJY4J+UqiE9+m/hVEEf8IdSrIOIl4APM7KuanCCdE7BzLr0kJQFPuSXxBPzDu0NNwDGnIGqafJ1zrrZVXnaXiFCzLzl+J5xzLgtl0BywJ2DnXHbJoASc03fCOeeyUJIuQ5NUX9JkSdMlzZR0R9DeXNI4SXODx2ZRxwyRNE/SHEk943U15SPgbdtSfQbX+4a9wu6Cc+kjeSPgEuBkM9sYXIL7vqTXgPOA8WY2VNJgYDAwSFIXIqWLugLtgLeCCxmqnZT2EbBzLrsk6VZki9gY/FgQbAb0Bp4K2p8Czg2e9wZGmVmJmX0NzAOOinUOT8DOueyyG7ciRy+bEGwDot9KUr6kaUQqH48zs4+BQjNbAhA8tg52LwK+jTq8OGirln8J55zLLrsxBWFmw4HhMV4vB7pJagr8V9LBMd6uqqvaYk40+wjYOZddUrAWhJmtJVKU83RgmaS2AMHj8mC3YiB69cj2wOJY75vzI+CjR9xNUa/ubF2+ild/cDYA3e67maKzI1UENs5fxKQrc6CKQJLV7fNr6nQ5Gtu4li33RX6ry2u3L3UvvB7VbUDFmqWU/HMolGwm74DDqdurH8ovwMpL2Tb271TMmxbuB8gAHuNqJOlLuGD1x1IzWyupAXAKcC8wFuhLpDx9X2BMcMhY4FlJw4h8CdcJmBzrHDk/Al7w5Au8c/rVO7UtHfcBrx7ci9cOPYcNXy2k65Cfh9S7zFU2+U22Dr9lp7a6P7uJbS+PYMv9Ayif8QEFJ18YeWHTOkoev40t9w+g5Nn7qXfJoBB6nHk8xtVI3nKUbYF3JM0AphCZA36ZSOI9VdJc4NTgZ8xsJjAamAW8Dlwb6woI8ATMivemsm31up3alo7bUUVg5aRpNGyfA1UEkqxiwefYpp1/a8hr3Z6K+TMAKP/qU+occnxk3+/mY+tXAWBLF6KCupBfULsdzkAe42ok7yqIGWZ2mJkdYmYHm9mdQfsqM+thZp2Cx9VRx9xlZvuZWWczey1eV+NVxKgr6XJJpwQ/Xyzpz5KuDa6Ly3r7XXU+i1/LgSoCtaBiyULyD/4xAPmHnoCa/u9qpvmHHk/Fd/OgvLS2u5cVPMZg5ZbwFrZ4I+AngLOA6yX9E7gQ+Bj4IfB4dQdFX9rxNmuT1dda1/WWa6goK2fhMzlQRaAWlIx6kILjelP/pr+g+g2gvGyn19Vmb+r2upqS0Q+F08Es4DEmqxZk/4GZHSKpDvAd0M7MyiX9C5he3UHRl3Y8q8xcjrLj5edS1Ks743tcEXZXsoYt/5atfxsMgFoVkX/Q0dtfU5OW1L/yd5Q8ex+2aklYXcx4HmMgDUa2iYo3As6TVBdoDDQEmgTt9YjcFZKV2vY8ni6D+jPxnIG5U0WgNjRqGnmUKDj1Eso+fDnyc/09qNf/D2x7ZQQVX88MrXtZwWOMVVjCW9jijYBHALOBfOBW4D+SFgA/AkaluG+14phnH6Sw+1HUa9mMc7+dyIzbH6HrkAHk1avLyeOeAGDlpOlMGZi+VQTSUb3LbiFv/0PQHk1ocPuzlL7+NNRrQMGx5wBQ9vn7lE1+A4CC43uT17IdBaddSsFplwJERnEb14bV/YzgMa7GtvCrHScqZkUMAEntAMxscXA3yCnAIjOLeX1bpUydgsgkvhiPyxZ7/HFcjddIL338ooRzTsHVI9O3IgZEEm/U87XAc6nskHPO1UgGzQHn/J1wzrkskwZzu4nyBOycyyrpcH1vojwBO+eySwaVJPIEnAXGPLQo7C44lxQX/7Hm72GlnoCdcy4cPgXhnHMh8QTsnHPhSIc73BLlCdg5l13KM2cOOOfXAz56xN2ct+xDzvz8pe1t3e67mbO+fI0zpo/l+Bf+TEGTxiH2MPN5jFPPY7xDstaCkNRB0juSvpQ0U9L1QXtzSeMkzQ0em0UdM0TSPElzJPWM19ecT8BeESP1PMap5zGOUlqR+BZbGfBrMzuIyPo310rqAgwGxptZJ2B88DPBa32ArkRqxz0qKT/WCXI+AXtFjNTzGKeex3iHZC3IbmZLzOzT4PkG4EsiZeZ7A08Fuz0FnBs87w2MMrMSM/samAccFescceeAJe0H/IRItc8yYC4w0szWxTwwS+x31fl88++4lUVcDXiMUy+nYrwbX8JJGgAMiGoaHqxnvut++wCHESlIUWhmSyCSpCW1DnYrAiZFHVYctFUrZgKWdB1wNjCRSBWMaUQS8UeSfmFmE2Idn+m8IkbqeYxTL+divBtfwkUXj6iOpEbA88ANZrZeqnYBtapeiPmvQbwRcH+gW1AFYxjwqpl1l/QYkVLMh1XT4e3/qvSjNSfTNM5p0o9XxEg9j3Hq5WKMk3kZWlD78nngGTN7IWheJqltMPptCywP2ouJDFArtQcWE0Mic8CVSboekcoYmNkiYlTEMLPhZnakmR2ZicnXK2Kknsc49XI1xlZakfAWiyJD3RHAl2Y2LOqlsUDf4HlfIoPRyvY+kupJ6gh0AmKumx5zQfbgsot+ROY1TgDuNbMnJLUCnjezE2J+AtJ/Qfboihhbl63aqSLGtlVrAa+IUVMe49TLlhhfbHNqvED6hoEnJ5xzGv/17ernE6TjgPeAz4HKbH0LkXng0cBewCLgwsrS9JJuBa4i8n3ZDfFK0ydSEaMrcBDwhZnNTuAz7STdE7BzLn0kIwGv//lJCeecPR97J+0rYswEsruKn3Mua1T4WhDOORcOXwvCOedCYr4gu3POhaPCF2R3zrlweE0455wLic8BO+dcSCo8ATvnXDh8CsI550LiUxAZ5OgRd1PUqztbl6/i1R+cDUQqCRSdfRIV20rZOH8Rk64cQum6DSH3NHN5jFPPY7xDJl0FkfMLsnslgdTzGKeex3gHq6hIeAtbzidgrySQeh7j1PMY75Csihi1IWYCltRE0lBJsyWtCrYvg7amtdTHUO131fksfu3dsLuR1TzGqZdLMU5WUc7aEG8EPBpYA3Q3sxZm1gI4KWj7T6o7F7acqyQQAo9x6uVajCsqLOEtbPG+hNvHzO6NbjCzpcC9kq6q7iCviOES4TFOvVyMcTZ9CfeNpJslFVY2SCqUNAj4trqDvCKGi8djnHq5GuNkzgFL+oek5ZK+iGprLmmcpLnBY7Oo14ZImidpjqSecd8/TkWMZkRq3vcGKit/LiNSemOoma2Jd4J0X5A9WyoJpDOPceplS4yTsSD73KO7JpxzOn08M+b5JJ0AbASeNrODg7b7gNVmNlTSYKCZmQ2S1AUYSaQUfTvgLeAAMyuv9v3jVcSI0bErzeyJePulewJ2zqWPZCTgr37YJeGcc8CUWXHPF5SkfzkqAc8h8r1YZVHOCWbWWdIQADO7J9jvDeB3ZvZRde9dk8vQ7qjBsc45lxK1cBlaoZktAQgeK2cHith5arY4aKtWzC/hJM2o7iWgsJrXnHMuNLtzdUP0BQOB4WY2/HueuqrRdMzOxLsKohDoSeSys11P9GHi/XLOudpRVpb4vkGy3d2Eu0xS26gpiOVBezHQIWq/9sDiWG8UbwriZaCRmX2zy7YQmLCbnXbOuZSrqEh8+57GAn2D532BMVHtfSTVk9QR6ARMjvVGMUfAZtYvxmsXJ9xd55yrJcm8v0LSSKA70FJSMXA7MBQYLakfsAi4ECIV5CWNBmYBZcC1sa6AgBpcBZGwLWP8KogUe7XtzWF3wbmkOHNtza+C+KTzgQnnnCPmzK7x+Woi55ejdM5llzRY5CxhnoCdc1nFE7BzzoVkd66CCFvOJuDy8grOv/hhClvvyWOPXMVDf3mD8RNmkifRonkj7rnzpxS2bgLAYyPe5rkXp5CXJ347qDfHH9M55N5noLw8jp3wPCWLlzG1zzUUNG3CYU/8kQZ7FbFl0Xd8esUNlK1bH3YvM5vHGMisEXDOLsj+9LPvs1/H1tt/vrrvibz0n5sYM/pGup9wEH8Z/hYA8+Yv45U3pvPK87/m8Uev5o67/0t5eQb9CaeJjgMvZ9Oc+dt/3vfGAayc+BETj+jJyokfsd+NA2Ic7RLhMY6ohcvQkiYnE/DSZWuZ8N5sLjjvqO1tjRrV3/58y5ZtSJEvR8dPmMlZPQ+lbt06dChqzt4dWjLji2oXgnNVqN+ukFandefbfz63va3wzB58N/JFAL4b+SKFZ50SUu+yg8d4h0xKwN97CkLSa2Z2RjI7U1vuvv8l/u+GM9m0qWSn9j8+8jovvvwJjRvV5+m/R+pnLVu+nkMP2Wv7PoWFTVi2fOfSLy62g+65hdm33U+dxntsb6vXugUly1YAULJsBfVaNQ+re1nBY7xDyi+tTaJ4JYkOr2Y7AuhWO11MrnfenUXzZo04uEv7/3ntxl+dzsQ3buXsMw/jX6Mid1pX9YdZOTp28bXu2Z1tK1azfvrMsLuStTzGOysrS3wLW7wR8BRgIlUvMtG0uoOiF7h47JGBDOgXd13iWvPptG94e+Is3n1/NiXbStm4qYTf3DKSB+6+aPs+vc44jJ//6h9c94vTaFPYhKVL125/bdmydbRutWcIPc9MzY4+nNZnnEyr004gv1496jRuxKGP3U/J8lXUK2wVGZkVtqJkxeqwu5qxPMY7S4ephUTFW5D9C+AnZja3ite+NbMOVRy2szS+E+7jKfP5x9MTeeyRq1j4zQr22bsVAP8c+QFTPlnAww9cxtx5S/n1LSN57l+/YtmK9VwxYDhvjr2Z/Pz0mT7PlDvhmh93FPv+8iqm9rmGA++8mW2r17Dgob+z7w39KWjWlDm33x92FzNepsc4GXfCvdo08TXIk3G+mog3Av4d1U9T/Cq5XQnXgw+/xtcLV6A8UdS2GXfceh4AnfZvwxmnHsKZ5z1Afn4etw05N62Sb6aa/8fhHPbkQ3S47AK2FC/hs77Xh92lrJOrMc6aEXDMAxOsiJHOI+BskSkjYOfiScaIdGyjxEfA52wMdwTsFTGcc1klay5D84oYzrlMUxZzAcj04hUxnHNZJR1GtomKl4ArK2JM2/UFSRNS0SHnnKuJrEnAXhHDOZdpMikBp74iRgaSNKAGlVFdAjzGqecxTn9+QWvVcmPZqHB5jFPPY5zmPAE751xIPAE751xIPAFXzefNUs9jnHoe4zTnX8I551xIfATsnHMhyYkELOlWSTMlzZA0TdLRMfZ9UtIFtdm/bCCpPIjtF5L+I6nhbh4/MvjzuVHSnZJOCdpv2N33ykRR8ZspabqkmyTlBa8dKenhkPt3S5jnz1ZZPwUh6cfAMKC7mZVIagnUNbPF1ez/JPCymT1X1euuapI2mlmj4PkzwCdmNizq9Xwzq/IufUltgI/NbO8qXlsIHGlmK1PT8/SwS/xaA88CH5jZ7eH2LCK6fy55cmEE3BZYaWYlAGa20swWS7pN0pRgxDZcVdQZknSEpImSPpH0hqS2Qft1kmYFI7ZRtfx5MsF7wP6Sukt6R9KzwOeS6kt6QtLnkj6TdFKw/5tA62AEeHzlbyGSrgPaAe9IeiesD1PbzGw5kWt4f6mI7pJeBpB0YhCnaUEMGwftNwdxnS5paNDWTdKk4O/pfyU1C9onSDoyeN4y+EcOSVdIekHS65LmSrovaB8KNAjO+UxtxyOrmVlWb0AjYBrwFfAocGLQ3jxqn38CZwfPnwQuAAqILDjUKmj/GfCP4PlioF7wvGnYnzEdNmBj8FgHGAMMBLoDm4COwWu/Bp4Inh8ILALqA/sAX0S915PABcHzhUDLsD9fbcVvl7Y1RBbE6k7ktzKAl4Bjg+eNgnifEfxdbRi0Nw8eZ0T9fb8TeCh4PoHIbxUALYGFwfMrgAVAk+DP5RugQ3X9863mW9aPgM1sI3AEkRHFCuDfkq4ATpL0saTPgZOBrrsc2hk4GBgnaRrwW6CykucM4BlJlwJpUNovLTQI4jSVSGIdEbRPNrOvg+fHEfnHDjObTeR/8ANquZ+ZpKrFwj8AhgW/HTQ1szLgFCL/sG0GMLPVkpoEr08MjnsKOCGBc443s3VmthWYBfzPtJBLnu9dlj6TWGTucQIwIUi4PwcOITIK+FbS74j8ix9NwEwz+3EVb3kWkb/M5wD/T1LX4H+EXLbFzLpFNwSzOpuim2qzQ5lM0r5AObAcOKiy3cyGSnoFOBOYFHxZKWB3vswpY8f0465/70uinpeTIzkiLFk/ApbUWVKnqKZuwJzg+UpJjYhMOexqDtAq+BIPSQWSugbfTHcws3eAm4lUh/YvJxLzLnAJgKQDgL3Y8WdRnQ1A4xT3K61IagX8DfizBb//R722n5l9bmb3Evlt40Aic+hXVV4tIqm5ma0D1kg6Pjj0MiIVziEyrXNE8DzRK35KJRV838/kqpYL/7o1Ah6R1JTIv/zziExHrAU+J/KXccquB5nZNkUuR3s4+HWuDvAQkbnkfwVtAv5oZmtT/SGyxKPA34LfQsqAKyxyZUqsY4YDr0laYmYnxdoxw1VO4RQQic0/iVy9s6sbgi8vy4lMEbwWxLAbMFXSNuBV4BagL5F4NyQyt3tl8B4PAKMlXQa8nWD/hgMzJH1qZpd8nw/o/lfWX4bmnHPpKuunIJxzLl15AnbOuZB4AnbOuZB4AnbOuZB4AnbOuZB4AnbOuZB4AnbOuZB4AnbOuZD8f4z3gHhScCqtAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.heatmap(\n", " df,\n", " annot=True,\n", " fmt='g', # format the data to apprear correctly\n", " cmap='RdYlGn' # Get in green and red\n", ");" ] }, { "cell_type": "markdown", "id": "704f4f9f", "metadata": {}, "source": [ "## Note" ] }, { "cell_type": "markdown", "id": "a0e21a75", "metadata": {}, "source": [ "- use df.corr() to find corelation of numerical variables\n", " - Very useful for data analysis" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }